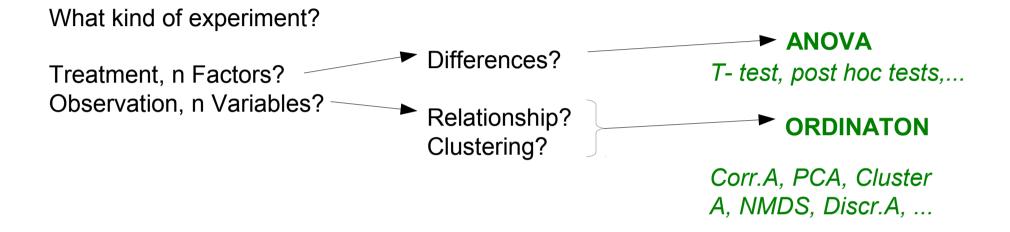
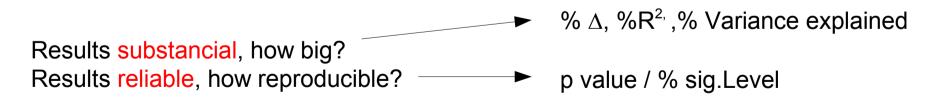

Evaluation of analytical Data - Aims and Purpose - from Measurements to conceptual Models -


Gert

Bachmann


What is the purpose of STATISTICS?

.....to clarify and quantify:

1. Was the experimental design successful or needing upscaling?

2. What are your main results, what sound conclusions may be drawn?

- 3. Which presentation graph is best?
- 4. What are the key parameters for a mathematical model?

A. Data Aquisition: Requirements and Premises

laboratory protocol

- Sample preparation All amounts, (Weights, Volumina, Tara, FG, TG, Aliquotes, Dilutions)
- Method dokumentation All Steps and procedures (Setups, Dilutions, times)
- Primary data tables All primary unmodified measurement results

********** Check of Plausibility *********

recapitulate and take down aims of work, approaches, hypotheses !!! Include this to the primary data tables and in your lab protokol !

B. Preparing the Data Evaluation

Protocol of Evaluation

save primary results, check their comleteness thoroughly reliability of calibrations, check calibration curves what is the scattering range of my methods, and which differences are therefore to be taken seriously?

Documentation of the calculation formula

which steps of analysis where carried out in which order (lab protocol) (at first, do NOT simplify calculations for parallel treatment of samples and blancs) know the meaning, the values and DIMENSIONS of the primary data e.g. :

Absorbance stands for concentrationsMol /Isolutionpeak areas (quotients) --> amount (weight)µmol,mgml titer volume stand for EquialentsµVal

be precise with AMOUNTS and CONCENTRATIONS

(one of the most common errors: mistaking mg for μ g and the other way around, avoid calculculating with many zeros behind the comma, eg 0,0001 mg. Use 0.1 μ g instead)

C. Calculate and relate the results

systematic compilation of the calculation procedure

primary data and their dimension method- dependent calculation sample preparation dependant recalculations

integrate calculations to formulas with variables and fixed values

********* check plausibility ********

simplification and economisation of calculation methods

(reducing fractions, in a worksheet software- Excel)

- calculation of all Samples
- relating to required dimensions
- adjust and format your tables for easy transfer to statistics programs
- simple statistics: Mean, Median, Standard deviation, SE, CI, CV (coeff.of var)

🗙 Microsol	ft Excel - TEICH.XLS								_	
🐏 Datei	<u>B</u> earbeiten <u>A</u> nsicht <u>E</u> ir	nfügen Forma	<u>t</u> E <u>x</u> tras Date <u>n</u>	Eenster ? Acr	o <u>b</u> at				_	BX
🗅 😅 🛯	a 🥔 🗟 🚏 🐰	🗈 🛍 💅	10 + Cl + 🦉	🛓 😨 Σ 🕫		🤵 🚜 100%	😰 🛛 🗖) 🖀		
 Arial	▼ 10 ▼	<u> </u>			 		· · A ·			
J30	▼ =	глд		a s vo 000	,00 +,0 ==					
	A B	с	D	E	F	G	Н	1	J	-
1 Z	Probe	Teich	Jahreszeit	Jahr	Beinlaenge	Gewicht	Rufe h		<u> </u>	
2	1 99FJT1_1	T1	FJ	1999	1	6	- 4			
3	2 99FJT1_2	T1	FJ	1999	2	2	8			
4	3 99FJT1_3	T1	FJ	1999	3	5	11			
5	4 99FJT1_4	T1	FJ	1999	4	4	12			
6	5 99FJT1_5	T1	FJ FJ	1999 1999	6	6	8			
7 8	6 99FJT2_1 7 99FJT2 2	T2 T2	FJ	1999	8	4	8			
9	8 99FJT2_3	T2	FJ	1999	5	1	14			
10	9 99FJT2 4	T2	FJ	1999	2	2	20			
11	10 99FJT2 5	T2	FJ	1999	2	3	3			
12	11 99FJT3_1	ТЗ	FJ	1999	9	4	7			
13	12 99FJT3_2	ТЗ	FJ	1999	3	5	9			
14	13 99FJT3_3	ТЗ	FJ	1999	6	2	15			
15	14 99FJT3_4	тз	FJ	1999	3	3	21			
16	15 99FJT3_5	T3	FJ	1999	3	4	4			
17	16 99SOT1_1	T1	SO	1999	2	12	8			
18 19	17 99SOT1_2 18 99SOT1 3	T1 T1	SO SO	1999 1999	4	4	16 22			
20	19 99SOT1 4	T1	SO	1999	8	8	22			
20	20 99SOT1 5	T1	SO	1999	12	12	16			
22	21 99SOT2 1	T2	SO	1999	16	6	12			
23	22 99SOT2 2	T2	SO	1999	4	8	16			
24	23 99SOT2 3	T2	SO	1999	10	2	28			
25	24 99SOT2_4	T2	SO	1999	4	4	40			
	Dokumentation	T7 daten Teich	Tabelle3 /	1999	A	ء ا	а			► –
Bereit		Jacen_reich	A_rabelies_/							
bereit	1.1					1			1 1	///
			\frown			\frown				
	Υ		γ			Y				
		c	Compling	dataa		_				
Single samples		3	Sampling dates:			Measuring parameter:				
•			aroun variables			measuring variable				
(cases)			group variables (factors)							
			(100003)			(variables)				

D. Graphical Plotting, Statistics

first::

simple line or barcharts (never waste time and efforts for hasty formatting!) Excel/Sigmaplot: MEDIAN and ERROR INDICATOR:

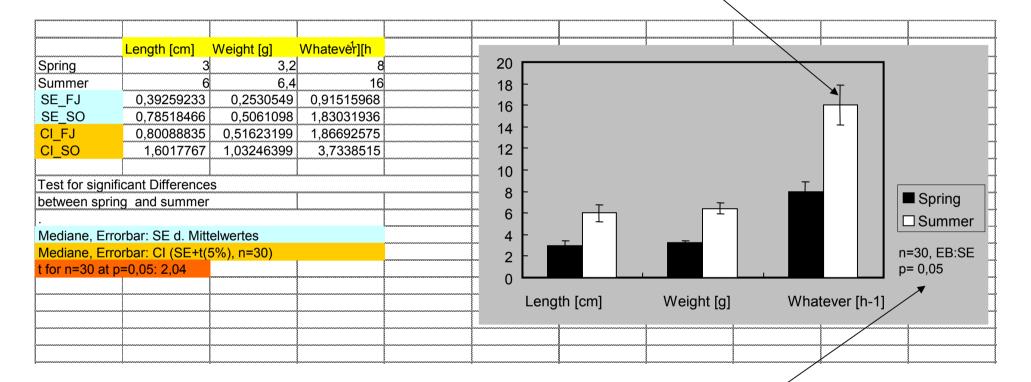
Standard deviation STDEV:

$$\sqrt{\frac{nSx^2 - (Sx)^2}{n(n-1)}}$$

Standard error (error of the mean) SE:

$$s_x = \frac{s}{\sqrt{n}}$$

 $\frac{s}{-100}$


or Confidence Interval CI:
$$x \pm t \cdot s_x$$
 (t n=1000...1.96)

for table only: Coefficient of Variance CV:

next:

define the aim of your data evaluation Differences (sig) Similarities temporal Sequence define the need for statistics sign.Differences, Korrelation (Ordination) or Classification? define the aim of your presentation (Poster/Publikation) <u>Choice</u> of suitable Software -->Formating of the plots

quick plot with error bars prepared with MS Excel / Libre Office Calc

Essential informations for Evaluation of plotted Data !

Students T-Test: $\Delta \text{ mean}(1,2) < \text{CI1+CI2}$

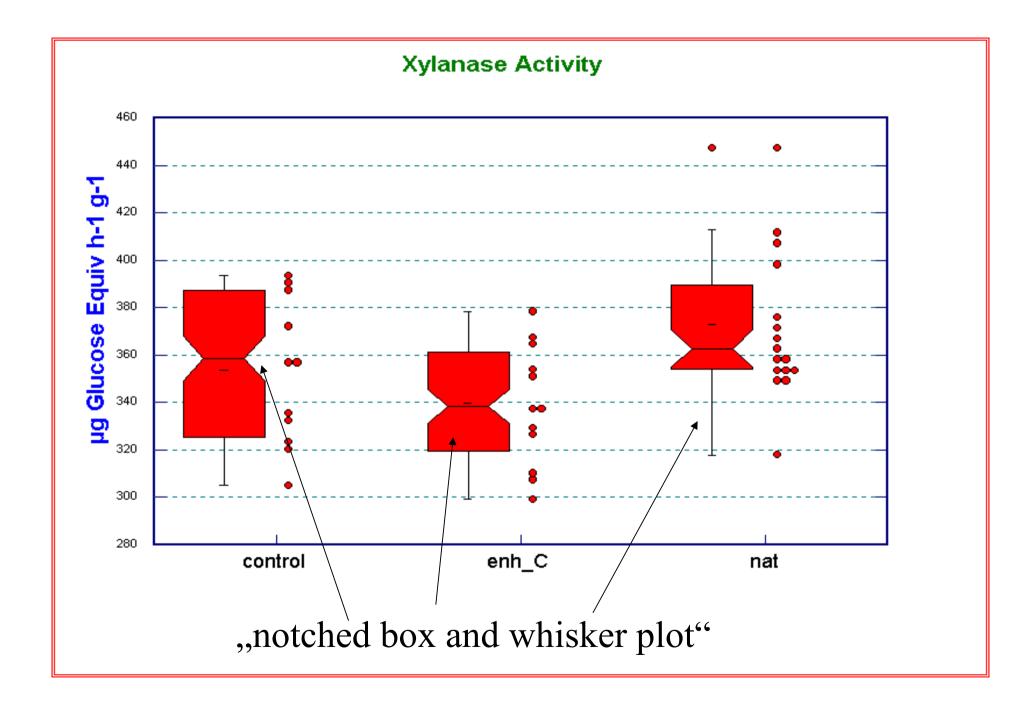
http://en.wikipedia.org/wiki/Post-hoc_analysis

Testing for adequate range of cases upscaling of undersized experiments

Jahr	Beinlaenge Gewicht	Rufe_h		
FJT1_Med	2.7	4.4 8		Adäquate n für Beinlänge
FJT2_Med	2	2.4 7.2	'n=10	t Wert für FG 9 = 2,262
FJT3_Med	3	3.2 8.1	'n=50	t Wert für FG 49 = 2,021
SOT1_Med	5.4	8.8 16	'n=100	t Wert für FG 99 = 1,987
SOT2_Med	4	4.8 14.4	'n=150	t Wert für FG 149 = 1,980
SOT3_Med	6	6.4 16.2		
FJT1_CI	1.199215608 1.079142	2333 2.018749636	0.333121	⁴⁰⁴ → =B8/2.262*1.987*SQRT(10)/SQRT(100)
FJT2_CI	1.663522913 0.723368	3596 4.221565132	0.462097	962 $-D0/2.202 1.307 3 G(((10))) 3 G((((100))))$
FJT3 CI	1.678154003 0.74733	5345 4.235950258	0.466162	227
SOT1_CI	2.398431215 2.158284	4666 4.037499273	0.666242	809
SOT2_CI	3.327045826 1.446737	7193 8.443130263	0.924195	925
SOT3_CI	3.356308006 1.494670	0691 8.471900515	0.932324	454
3.5 3 2.5 2 1.5 1 0.5 0	FJT1_Med F	JT2_Med F	=JT3_Med	nlaenge

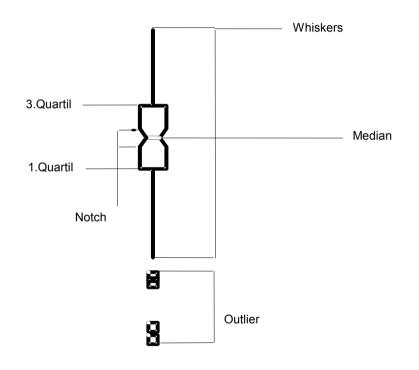
Bezüglich der Beinlänge muss man einen Test für die adequate Stichprobengröße machen. Bei gleichbleibender Varianz, braucht man ein N von mindestens 100.

The Significance Level, the Reproducability and Expressability of an Experiment

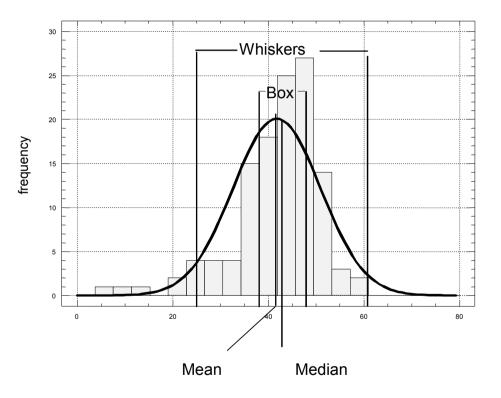

significant differences (univariate Tests, ANOVA - Analysis Of Variance):

Significance level: P + CI = 100 % P.... Error probability CI ...Confidence Interval

highly significant	P < 0,1% (0,001)	***
significant	P < 1% (0,01)	**
weakly significant	P < 5% (0,05)	*
not(?) significant	P > 5%	n.s.

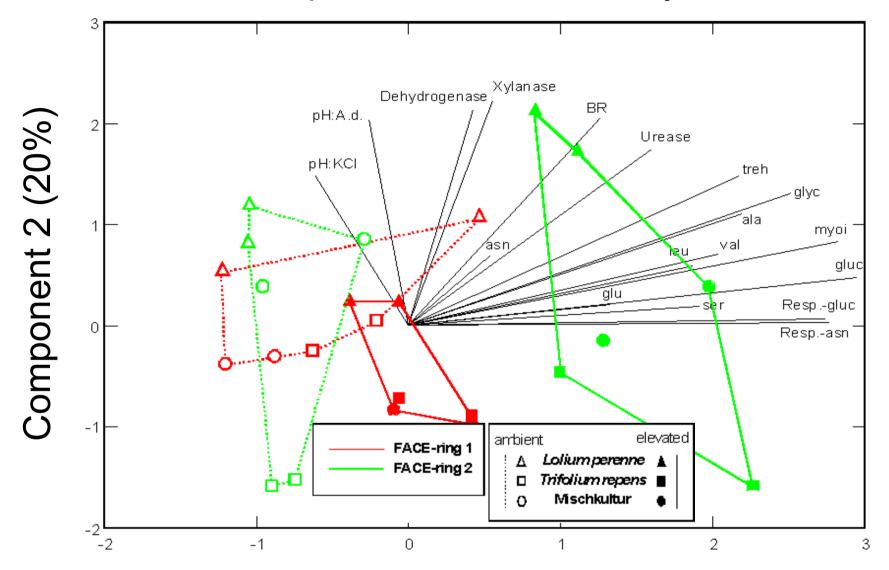

In any case: do provide the actual significance level !

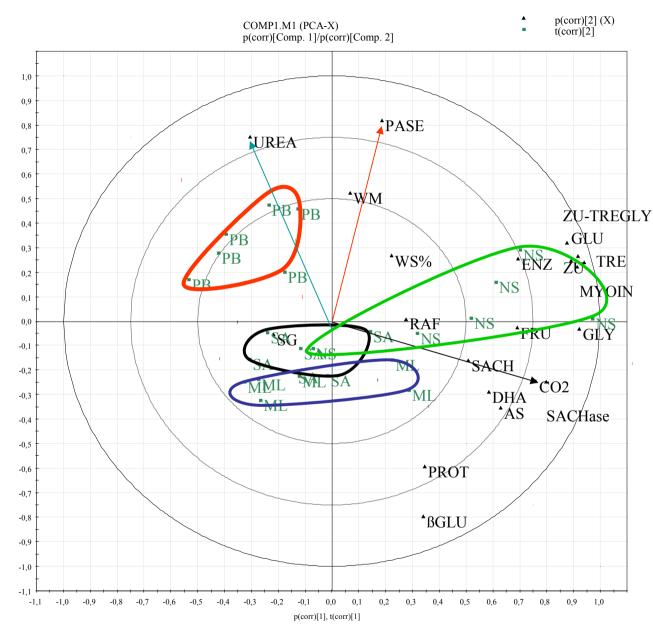
It is not only of interst *if*, but first of all *how* signifikant your results really are.



Explanation of notched Box and Whisker Plots

Notched Box and Whisker Plot


Frequency Histogram

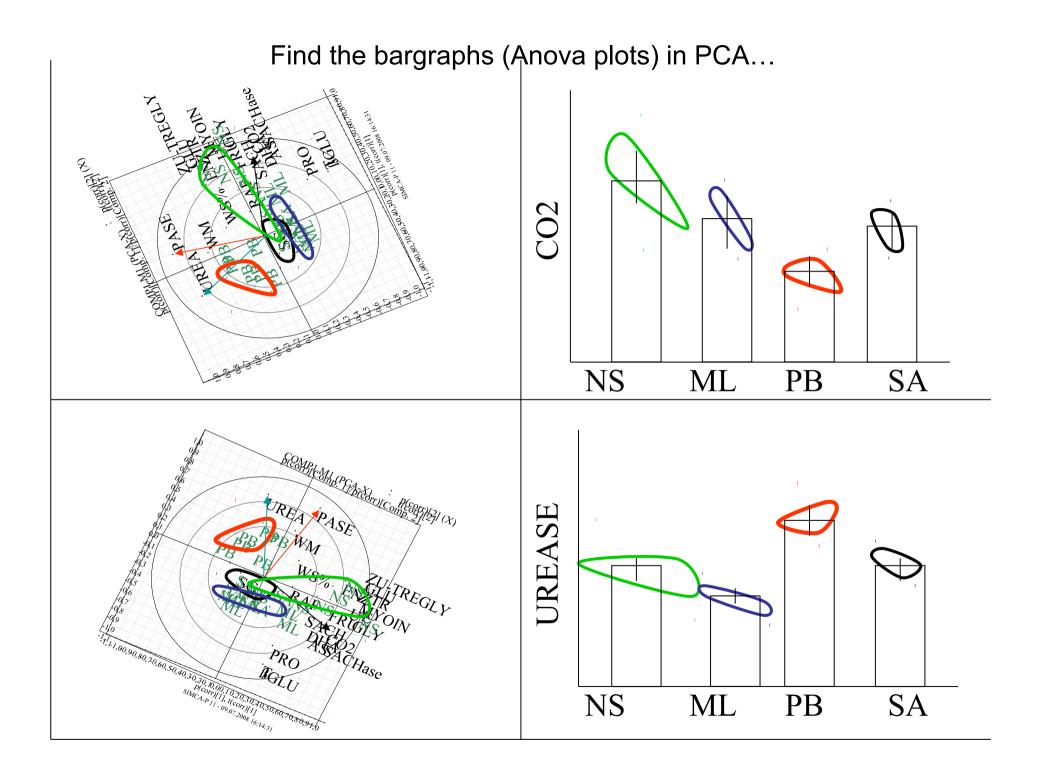

Notch: indicates 95% confidence interval for the Median.

If Notches do not overlap, a significant difference between medians is present

Main Component or Factor analysis

Component 1 (80%)

Simca-P

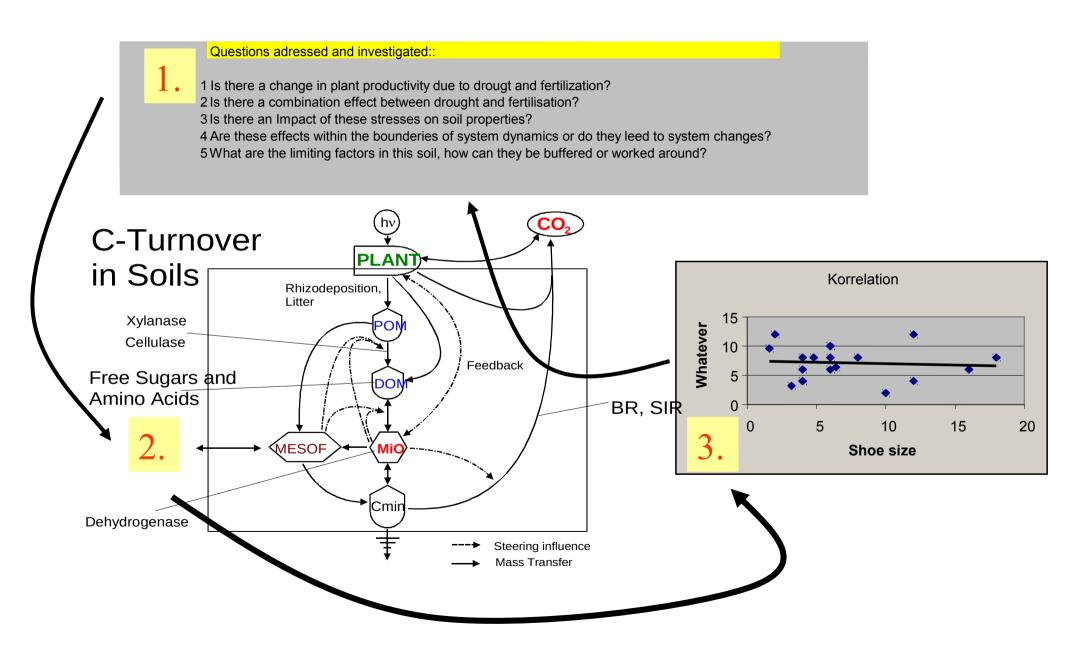

Analysis Loadings Bi-plot right click, copy "enh. Metafile"

Powerpoint / Impress

reduce size ungroup set fonts to 12p group

add main vectors surround cluster by bezier lines

SIMCA-P 11 - 09.07.2008 16:14:31



Evaluation of analytical Data - Aims and Purpose - from Measurements to conceptual Models -

hypothetical model for Trifolium r. on alkaline soil hv CO_2 N_2 Shoot Root Nod. Bac POM DOM org. A Fungi CO3--**KI** ⁺⁺ Bacteria Fauna KI CO Urease Activity tot. = Mass tranfer = Producer \bigcirc = Storage = Consumer \rightarrow = Regulator

The questions adressed, hypothesis, and the conceptual model determine the statistiks- and plotting necessities !

